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Robert Hermann

1. INTRODUCTION
Consider a differential equation of the form
v'"(t) + r(t)v(t) = 0 . ()

Classical Sturm-Liouville theory deals with such equations in which v(t)
and r(t) are scalar-valued functions of t[6]. The theory of these equations
is well-known, and, of course, they appear in many contexts in both engi-
neering and physics. However, the theory of systems of type (1.1) in which
v(t) is a vector-valued function of t is considerably less developed and
well-known among workers in applied mathematics, despite the fact that
many physical problems lead to such equations in a very natural way,
particularly in stability problems. M. Morse has developed the founda-
tions for a successful generalization of the classical Sturm-Liouville
theory to such systems [7]. This work has in recent years been extended
and applied to various problems in global Riemannian geometry, and has
led to a revitalization of this subject. Since this work does not seem to
be well-known among its potential consumers in the applied fields, we aim
to give here an exposition of some parts. We will assume that the reader
is conversant with the basic existence and uniqueness theorems for ordi-
nary differential equations and with the treatment of linear algebra via the
theory of vector spaces.

We will now present enough notations and definitions to be able to
state the main result: the Morse index theorem. The proof will be given
in the second section. Since it may be difficult for the reader to see the
forest for the trees while reading the proof, we may point out here that
the proof basically consists in putting together certain well-known ana-
lytical techniques concerning systems of second-order linear differential
equations with the basic ideas of the calculus of variations. The main dif-
ference in our proof from Morse's is that we try to work directly with
the infinite-dimensional linear spaces that occur, whereas Morse, by a
variety of ingenious analytical and geometric tricks, tries to reduce the
infinite -dimensional situation to a finite one.



Let V be a vector space of finite dimensionl over the real numbers.
Elements of V will be denoted by such letters as u, v, w, ... . It will be
assumed that V has a given fixed, positive -definite, symmetric bilinear

form (u,v) = <u,v>. Thus:
<au + bv, aju; + byvy > = aa; <u,u > +ab; <u,v;>
+ayb <vu > + bby <v, vy 2> (1.1a)

for a,a;,b,bjER (=hreal numbers), u,v,u;,v; €V

LA = b i b (AT (1%16)

<u,u> = 0 for ueVv : <unu > = 0 iflandlonlysf s uS=R0 (1)

For veV, put ”v” = <v,v>1/2. Recall that the following inequalities
follow from the positive-definite condition:

lw + vl = lull + lvll (triangle inequality)

|<u,v> | =|lull I+l . Equality holds if and only if au + bv = 0 for

some a,b€R. (Schwarz inequality).

We must also consider linear transformations of V onto itself,
usually denoted by R,S,T,..., and bilinear symmetric forms other than
< ,> that will not necessarily be positive-definite [i.e., satisfy (1.1a),
b), but not c)], and that will be denoted by Q( , ). A linear transforma-
tion R: V-V is said to be symmetric if

SR(u),v > = <u,R(v)>  for u,veV

t will be a real parameter extending over the interval [0, ®)or a
subinterval. We will consider vector-valued functions of t, denoted usually
by u(t), v(t), etc., defined over an interval and usually continuous, piece-
wise C?, and taking values in V. u'(t), u"(t), dv/dt, etc., denote the deriva-
tive with respect to t.

We will be considering differential operators of the form

v =~ v'"(t) + R¢(v(t)), also denoted by: (1.2)
dZ
= = :
(shi t

It seems to be an open problem to extend the theory to infinite-
dimensional space.



where t - Ry is a one-parameter family of symmetric linear transforma-
tions of V. (It is possible to generalize the theory by including some kinds
of terms in v' on the right-hand side of (1.2), but we prefer to treat this
simpler case, referring to Morse [7] for a complete treatment.

We must also consider boundary conditions: Algebraically, a
boundary condition is an ordered pair (W,Q) consisting of a subspace
WCV and a bilinear, symmetric form (u,v) -~ Q(u,v) defined on W alone.

One fundamental problem may be described as follows: Find a
solution of

v'"(t) + Re(v(t)) = 0, 0=t= o, subject to the following ({1558

boundary conditions;

v(0)ew, <v'(0),w> = -Q(v(0),w) for all weW; (1.4)

v(a)ew?, <v'(0),w> = -Q&(v(a),w) for all weW?2, (1.5)
for a given number a >0, and two sets (W,Q) and (W2,Q2) of boundary con-
ditions. We refer to (1.4) and (1.5) as, respectively, left- and right-hand
boundary conditions.

There is a problem in the calculus of variations associated with
(1.3)-(1.5) that is the foundation for the Morse treatment. Proceed as

follows to find it:

Suppose v(t), 0 =t=<a, satisfies (1.3)-(1.5). Then:

-foa <v"'(t) + Ry(v(t), v(t)>

-<v'(t),v(t)>|: + La [<v'(£),v'(t)> - <Ry(v(t),v(t)>] at

a
Q3(v(a),v(a)) - Q(v(0),v(0) + f vl 2 - <Rwow>lat 1

0

1

This suggests the following definition: Suppose v(t), 0=t=a, is
a curve in V. Define:

I(v) = Q¥v(a),v(a)) - Q(+(0),v(0)) +f 65 s o . ik

0

1Where it is felt that it will lead to no confusion, we will compress the
notation by omitting t.



and call it the index of the curve v. If our boundary-value problem (1.3-5)
admits a solution, there is a curve v with I(v) = 0; hence, it is suggested
that we turn this remark around and try to minimize I(v) by a curve v(t)
satisfying (1.3-5). This is an ordinary variational problem. It is readily
verified that its Euler equations are (1.3), but this fact will remain in

the background.

In this paper we will restrict ourselves to the case in which the
right-hand boundary conditions (W%,Q%) are identically zero.

Definition. A point a €(0,) is said to be a focal point for the
operator and boundary condition (W,Q) if there is a non-trivial, C? curve
v(t) in V, 0 =t <a, satisying:

() = @ ;

v(0) eW ;

<v'(0),w> = -Q(v(0),w) for all weW; and

(=) =00
The index of such a focal point is equal to the dimension of the linear

space of all curves satisfying these conditions (hence, is always infinite
and no greater than the dimension of V).

Definition. Let [0,a] be an interval of real numbers. Let Q(0,a)
be the space of continuous, piecewise C? curves t > v(t), 0=t=a, in V
satisfying the following conditions:

v(0) e W ;

<v'(0),w> = -Q(v(0),w) for all weW  ;

(@) ="0

Since two such curves can be added pointwise and multiplied by real con-
stants, Q(0,a) is a vector space over the real numbers. For ve((0,a), let:

a
I(v) = -a(v(0),v(0)) +/ o' (8)ll% - <Rylv),v> at

0

Define the index of the interval [0,a] as the maximum number of linearly
independent elements of (0,a) on which the function I is negative.

. Thus, there are the two distinct ideas of index of a focal point and
index of a closed interval [0,a]. They are related via the following main
theorem:



Morse Index Theorem. The index of an interval [0,a] is finite and
equal to the sum of indices of the focal points contained in the open interval
(0,a). It is also equal to the maximal number of linearly independent ele-
ments of Q(O_,a) that are C® and are eigenfunctions of the differential opera-
tor J = (d2/dt?) + Ry for positive eigenvalues.

As a general intuitive remark, notice that the index of an interval
is an analytical invariant of the operator J and boundary condition (W,Q),
while the sum of the indices of the focal points is more like a topological
invariant. Thus, the index of the interval may be expected to vary reason-
ably smoothly when J,(W,Q), or [0,a] are varied in a reasonably smooth
way. As such a variation is performed, it is not expected that each focal
point varies smoothly; the remarkable fact contained in the Index Theorem
is that the sum of indices of the focal points does vary in a more reasonable
way. Another intuitive remark is that the Index Theorem provides the
foundation for a perturbation-theory approach to the problem of finding
focal points.

2. PROOF OF THE MORSE INDEX THEOREM

Eet V(W @) J. = (dz/dtz) + R¢, Q(0,a), etc., be as described in the
introduction. They will be considered as fixed throughout the discussion.

The proof of the Index Theorem will be broken up into smaller
steps.

Lemma 2.1. Given a pair (vo,uo) of vectors in V, there is a unique
curve in V: t = v(t), 0< t< o, satisfying J(v) = 0 and: v(0) = vg, v'(0) =
up. In particular, if v = up = 0, then v(t) = 0. If vy, uy, and the coeffi-
cients of J depend continuously on additional parameters, so do the
regulting solutions, and the dependence is uniformly continuous for t
ranging over a bounded closed interval.

This follows from the basic existence theorem for ordinary differ-
ential equations [4].

Lemma 2.2. The vector space of solution curves 6f J = 0 that are
C? and satisfy the (W,Q) boundary condition at t = 0 has the same dimen-
sion as V.

Proof. For later reference, we will prove a little more and develop
additional notations. Suppose dim V = n, dim W = m, dim Wt = n-m.
(WL denotes the orthogonal complement of W in V with respect to the
form <, >. Explicitly,

Wi = {ueV: <u,w> = 0 for allweW} .)



Adopt the following ranges of indices:

1= =m0t sl =a, bl mis i = S ()
Adopt a fixed orthonormal basis (uj) of V such that (uy) and (ug) are, re-
spectively, orthonormal bases of W and wi. Then, we can find n-solution

curves of J = 0, denoted by vi(t), 0=t < ., 1=i=n, such that:

va(O) = u, 3 I'=a =m 4 (2~Za)

for all weW, 1l =a=m (2.2b)
v4(0)ew
va (0) = 0 (2.2¢)
forfmet li=ia=n 5
VO'L(0> = (2.24d)

(The existence and uniqueness of solution curves satisfying these condi-
tions follow easily from Lemma 2.1.) Note also that these curves satisfy
the (W,Q)-boundary condition at t = 0,

We show that the curves v;(t), 1 =i =n, are linearly independent.
Suppose there is a linear relation of the form:

Setting t = 0, using (2.2a) and (2.2c), we have:
S S
a

implying C; = 0, implying

Z Gultls="0

a

Differentiating, setting t = 0, and using (2.2d), we have:

gC(xua =0

forcing Cy = 0, whence linear independence of the v;(t).



To complete the proof of Lemma 2.2, we show that every solution
curve v(t) if J = 0 satisfying the (W,Q)-boundary condition att = 0 can
be written as a sum of the Vi(t) with constant coefficients. Now, we have:

v(0)eW ;  hence v(0) can be written as:
v(0) = Z Cau, = Z CEvRCav2(0)
a a

The solution curve v(t) - Z Cava(t) is zero for t = 0; hence its derivative
a

att = 0 can be written as a sum

Dang. = D Gavnilo)

o
Thus, v(t) - Z C;vi(t) is a solution of J = 0, is zero att = 0, and its first
i

derivative is zero att = 0; hence isidenticallyzero. Q.E.D.

For future reference, we shall refer to the basis (vi(t)) of solutions
of J = 0 and the (W,Q)-boundary condition constructed above as a canonical

basis.

Lemma 2.3. If v(t) and w(t) are two solutions of J = 0 satisfying
the (W,Q)-boundary condition att = 0, then:

<v'(t), w(t) > = <v(t), w'(t)> forO=t<ow . (2.3)

Proof. Note the identity:

£ (VHOw(t)> = <HO,w(£)>) = <y (R w(D)> + <vi(0)w!(6)>
= <v'(t),w'(t)> =< v(t),w"(t)>
= <Re(v ) w(t) > + <v{8) Re(w(t) > = 0,
obtained by use of the symmetry property of Rt. Now,

<v'(0),w(0) > - <v(0),w'(0)> = -Q(v(0),w(0)) + Q(v(0),w(0))
=0

Lemma 2.4. If € is sufficiently small, there are no focal points on
the interval [0, €].




Proof. Let (vi(t)), 1 < i =n, be a canonical basis for solutions of
J = 0 satisfying the (W,Q)-boundary condition at t = 0.

Define curves wi(t) as follows:
(D) R=E () Sfo n S IE=Na =

v (t)
t

form+ 1l =0 =mn

<
2
<t

I

By (2.2), wq is continuous at t = 0 and equals there the v'a(O) = ug. Then
the vectors (wj(t)) are linearly independent for t = 0, hence by continuity
also for t sufficiently small, say for 0 =t =e€. Then [0,€] can contain

no focal points. For, suppose otherwise, i.e., v(t) is a solution of J = 0
satisfying the (W,Q)-boundary condition at t = 0 and vanishing at, say,

t = €. By Lemma 2.2, v(t) can be written as % Civi(t), for constants

G Wt ence, also,

0 =l = % Cawal€) + E Cowole) - €

Thus, C;, = 0 = Cgq, hence v(t) =0, a contradiction.

Lemma 2.5. Suppose t,€(0, ®) is a focal point. Then, for € suffi-
ciently small, [to - €, to + €] contains no other focal point. We then con-
clude, using also Lemma 2.4, that each bounded interval contains only a
finite number of focal points.

Proof. Suppose vi(t), 1 =i =n, is any basis of solutions of J = 0
satisfying the (W,Q)-boundary condition at t = 0, such that:

vi(te) = 0 for 1 =i=p

3

but vi(ty) are linearly independent for p + 1 =i =n (p is then the index of
the focal point). By formula (2.3),

<vilto), vi(t))> = 0 for 1=i=<p, andp+1=j=n
The v;(t,) must be linearly independent for 1 =i = p [otherwise, the v,(t),...
vp(t) could not be linearly independent]; hence, vi(to),,..,vi)(to),vph(to),---,

vn(to) must form a basis for V. Now,

vi(t)
ot

= vilty) for 1=i=p



hence, if € is sufficiently small, the vectors

vi(to+ €)
€

] Vj(t0+€), for 1=si=p s = ¢

form a basis for V. The proof that there are no focal points on [to- €, to+ €]
is now similar to that in Lemma 2.4.

We need more notation. If v(t) is a curve in £(0,a) and W(t),
0=t=a, is any continuous piecewise C! curve in V satisfying the (W,Q)-
boundary condition at t = 0, put:

I(v.w) = -Q(v(0),w(0)) + foa <v'(),w'(t)> - <Re(v(t),w(t)> dt o
2.4

Let 27(0,a) be the subset of curves v(t) in (0,a) defined by taking all
linear combinations with constant coefficients of curves of the following
type: For each ty€(0,a] that is a focal point, consider a C? curve v(t) in
[0,t;] that satisfies J = 0 and the (W,Q)-boundary condition at t = 0, and
that vanishes at t = t;,. Extend this curve over [0,a] by defining v(t) = 0
for ty=t=a. Graphically,

Then,

The dimension of {;(0,a) as a real vector space is equal to
the sum of indices of the focal points on the interval (0,a] . (2.5)

Lemma 2.6. Let (vi(t)), 1=i=n, 0 =t=a be any basis for the
vector space of curves in V that are C” and satisfy J = 0. Suppose that
v(t), 0=t =a, is a differentiable curve in V such that:

I(v,w) = 0 for all curves w(t), 0L t<a, that lie in 05(0,1). Then,
v(t) admits a representation as:

™

v(E) o= B (v(t) e for 0 =t=a (B56)

ol

1l
—

where the coefficients aj(t) are continuous, piecewise C? functions for
=t =d.




Proof. Obviously, v(t) admits such a representation (2.6) valid
except possibly for the values of t that are focal points. We must show
the functions aj(t) obtained in this way have a limit as t approaches a
focal point. Suppose, then, that to€(0,a] is such a focal point. We may
suppose the basis (v;(t)) is chosen so that

vl = 0 el =S
(vi(to)) are linearly independent for p + 1 =i=n

By Lemma 2.3, <vi(to), vj(to)> = 0for 1=i=p, p+ 1=j=n. As before,
this implies that v'l(to),...,vI')(to), vp+1(to),...,vn(to) forms a basis for V.

Then, for 't iclose to tg;

P vi(t) =
v(t) = T ajt)t-t) ——+ ¥ aj(t)vi(t)
1 t-t, 3
1=1 i=p+1
Bor 1" =9=3p;
lim Vi(t) :
toty t-ty ekl

hence for t sufficiently close to t,

vi(t) vp(t)
T A e e

forms a basis of V and depends in a C!' way on t. Since v(t) is continuous,
the functions aj(t)(t-t,) for 1=i=p and aj(t) for p+1=1i =n are continuous
at t.

These remarks are valid for any v that is merely continuous. Now
we want to take into account the fact that I(v,w) = 0 for all we Q3(0,1).
For 1=j =p, let wj be the elements of {13(0,1) defined as follows:

wi(t)

w;(t)

Vi)l forfli=t=t,
(237)

OB for Sty =t—a

. 0 = I(v,wj) = -Q(v(0),w;(0)) + fa <v'(t),wi(t)> - <Rg(v(t)),wi(t)> dt

0

equals, using (2.7),

t
-Q(v(0),v4(0)) + / f <v'(t),v3(t)> = <Rt(v(t)),vJ~(t)> dt

0



equals, after integrating by parts and taking into account the fact that
(vl) 0 and that v and vj satisfy the (W,Q)-boundary condition at
t =0,

<v(to), vi(to) >

'Il‘lhus, v(to) must be a linear combination of vp+1(t0),...,vn(to). We conclude
that

lim a;(t)(t-t)) = 0 for 1=i=p
t—t,

Now, since v(t) is differentiable, the functions a;(t)(t-to) for 1=i=p are
differentiable att = t,. We conclude (using the definition of derivative)
that lim a;j(t) exists and equals

t—>t,

(% (ai(t)(t-to) I QED

Lemma 2.7. Let vi(t), ]1=i=n, 0=t=a, be a basis of curves in
V that are C? and satisfy J = 0 and the (W,Q)-boundary condition at t = 0.
Suppose u(t) and v(t), 0=t =a, are two curves in V admitting representa-
tions of the following type:

)

Sl = E(thvs(t) s font0i=t=a

-
1l
-

llin) =

|
.M:j

f;(a)v;(t) forli=t=2

-
1l
—

Suppose in addition that the functions fj(t) are continuous and piecewise C!

for 0=t =a, and that u(t) satisfies the (W,Q)-boundary condition at t = 0.
Then

Equality holds only if u = v.

Proof. For € > 0, let

a
Te(@) = -QMu(0)u(0) + [ [[u(®]|? - <Refue)u(t)> at
£
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|la®)]|? = 5 (f;(t)fj(t) <vi(t),vi(t)> + £5(t)f5(t) <vi'(t),v3(t)>

+ (05(8) <vy(t),v](6)> + {050 <vi(D),v;(6)>)

Now,

a a

f £(£)5;(t) <v{(t),v3(t)> dt = £;(t)f5(t) <v{(t),vj(t)>

(> t=€

a

- f f{(t)fj(t) <v{(t),vj(t)> + fi(t)fJf(t) <v{(t),vJ-(t)>
&

+ £5(t)f5(t) <vi(t),vj(t)> at

Using the last two identities and Lemma 2.3, we have

a a n
f [lu'(t)]|? at = f [“ > ftvilt)||? + <Ry(ult)), u(t)>jl dt
E € i=1

- Q(u(a),u(a)) + Qu(€),u(€))

Hence:
G e
Ie(u)=f 1Y sievi)])? at
e i=1

- Q(u(a),u(a)) + (Qu(€),u(€)) - Qu(0),u(0)))
Similarly,

Ie(v) = -Qlv(a),v(a)) + (Q(v(e),v(e)) - Q(u(0),u(0))

hence



Since all the other terms in this identity approach a limit, we have:

a
lim f “ > f{(t)vi(t)“z dt exists.
- .

E-+0

Since it must clearly be >0 unless fi(t) = 0, i.e., unless u(t) = v(t) for
=t =a, we have

I(u) > I(v), exceptifu = v. 0.E. D,

This lemma is due to W. Ambrose [2,3] and serves as a replacement
for the arguments from the general calculus of variations that were used
by Morse.

Corollary to Lemma 2.7. The interval [0,a] contains no focal points
if and only if I(u) >0 for all curves ue(0,a). (In other words, the Morse
index theorem holds if [0,a] contains no focal point.)

We must now apply Lemma 2.7 in the special case in which W and
Q are both zero; focal points are, in this case, called conjugate points.
For the reader's convenience, we restate the definition in slightly different
form.

Definition. Let a and b be positive real numbers; a and b are
said to be mutually conjugate if there is a C? curve v(t), not identically
zero, satisfying:

v + Re(v(t)) = 0 i
and
Vid M= b)=10

Lemma 2.8. Suppose that a and b are real numbers, 0 =a <b,
such that the real number interval between them contains no pair of
mutually conjugate points. Suppose that u(t) and v(t) 0=t < ®, are continuous
curves such that:

u is piecewise (CF @il g ener

a2
v satisfies: eread Ry J(v) = 0.
u(b) = v(b)

u(a) = v(a.).
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Then,
b b .
v'(t - <Rg(v(t)),v(t o= (e - <Rg(u(t)),u(t i
[ Ivw) - <ravtonvt> at = [ fw]] - <reate.ow> o
a a

Equality holds only if u(t) = v(t) for a=t =b.

Proof. First we deal with the case u(a) = v(a) = 0. By a transla-
tion of the origin of the t-axis, we can also suppose that a = 0. The result
then follows from Lemma 2.7, since our hypotheses imply that there are
no focal points in the interval (0,b], with respect to the boundary conditions
W =0,Q=0,att = 0.

Now we reduce the general case u(a) = v(a) to the case just con-

sidered. By Lemma 2.2 (since a and b are not mutually conjugate), there
is a C? curve w(t) satisfying w(b) = 0, w(a) = u(a) = v(a),

Let u*(t) = u(t) - w(t), v¥(t) = v(t) - w(t). Since u*(a) = 0 = v*(a), case 1
applies, to give

b b
f ||u*'(t)“Z - <Ry(uX(t)),u*(t)> dt 2/ “v*'(t)“2
a a

- <Ry(v*'(t)),(v*(t)> dt

But, the left-hand side of this inequality is:

b
f [”u'(t)HZ |l ] - 2 <ul(e),wi(e)> - <Ry(u(t),u(t)>
a

- <Rg(w(t)),w(t)> + 2 <Rt(u(t)),w(t)>] dt

equals, after integrating by parts and taking into account the relations
satisfied by w,

b
f {Ilu'(t)”2 = <Rt(u(t)),u(t)>] at - <w'(a),w(a)>
a
b
+ 2 <u(a),w'(a)> -2 <u(b),w'(b)> = / ﬂ'u.(t)”z
a

= <Rt(u(t)),u(t)>] dt + <v(a),w'(a)> - 2 <v(b),w'(b)>

[since v(a) = u(a) = w(a)]



Now,

hence, the right-hand side of the above inequality is, after an integration
by parts,

<v¥!(b),v*(b)> - <v*(a),v*'(0)>=<v'(b)-w'(b),v(b) > ,

since v*(a) = 0, and w(b) = 0. Similarly,
b
/ |[v' ]| - <Ry(v(t),v(t)> dt = <v'(b),v(b)> - <v'(a),v(2)>
a

Thus,

v

b
f [[a'®)]|? - <Rgla(t),u(t)> dt =2 <v(b),w'(b)> - <v(a),w'(a)>
a

+ <v'(b),v(b)> - <w'(b),v(b)> = <v(b),w'(b)> - <v(a),w'(a)>

b
+/ v (]| - <Ry(v(0)v(0)> dt + <v'(a),v(a)>
a

Now,
d 1 o 1 W
3 (Kv(t),w'()> - <v'(t), (t)>)
= <v'(t),w'(£)> + <v(t),w"(t)> - <v"(t),w(t)> - <v'(t),w'(t)>
= <v(t),Re(w'(t))> - <Rg(v(t)),w(t)> = 0
Hence,

<v(b),w'(b)> = <v'(b),w(b)> + <v'(a),w(a)> - <v(a),w'(a)>
equals, after ﬁsing the relations w(b) = 0 and w(a) = v(a),

<v'(a),v(a)> - <v(a),w'(a)>

Putting the last relation together with the last inequality proves Lemma 258:

15
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Lemmas 2.7 and 2.8 may be regarded as particular analytical
tools needed to prove the Index Theorem. They really contain fundamental
facts from the calculus of variations in a disguised form.

Now we proceed to another analytical tool, proving, again in slightly
disguised form, a "compactness''principle for solutions of the type of dif-
ferential equations we have been considering.

Theorem 2.9. Suppose that Tk . (d"‘/dtz) = th< is a sequence of dif-
ferential operators of the type we have been considering, k = 1,2,..., that
WKk s a sequence of boundary conditions, and that aj is a sequence of
real numbers.

Suppose that:
k

lim By = R, ;

k—>x

im Wk =W ; limk=qQ
k—>o0 k—

limax = a>0
k—o0

Suppose further that vk(t), 0<t<ag, is a sequence of C? curves in V
satisfying:

the (WK, QK)-boundary condition at t = 0

vk(ak) 0

.]'k(vk)‘ =0
[ Il ae =1
0

Then, at least one subsequence of the Vk_converges, along with its first
two derivatives, uniformly to a C? curve v(t), 0=t =a, that is a solution of
J(v) = 0, the (W,Q)-boundary condition, and v(a) = 0.

Proof.
vi(t)
[vic(OIl + llvic(0) ]

Let up(t) = '
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Since ||uy(0)|| and |]u1'<(0)|| are =1, we can suppose after at most taking subse-

quences that iim uk(o) = up, lim uk(O) = uy. By the existence theorem for
— 00 —>00

ordinary linear differential equations of the type gk = 0, uy(t) converges,
along with its first two derivatives, uniformly to a C? nonidentically zero
curve u(t), 0 =t=a, that is a solution of J(u) = 0, the (W,Q)-boundary con-
dition, and u(a) = 0. Then, also:

a

e
lim f llux(e)]1 2 at = f llu(o)]] at
k—o o

0

But also,

*k (t)|| dat = L
f [y (8)]] at = v (O + [ vic(0)]]

0

Hence, ||vi(0)|| + || vi(0)|| itself is bounded, and we can apply the existence
theorem for the systems JK = 0 to infer the existence of a curve v(t) to-
wards which vk(t) and its first two derivatives converge uniformly. Q.E.D.

We can now proceed to the proof of the Index Theorem. It is most
convenient to arrange the proof so that the final result will appear as a
statement that different kinds of indices are in reality the same. Hence,
we now introduce the different indices, and also the so-called augmented
indices.

Definition. Let a be a positive real number.

I,(0,2) = The sum of indices of the focal points contained in the
interval [0,a).
AL (0,a) = The sum of indices of the focal points contained in the

interval [0,a].

(Thus, Al is the augmented index corresponding to the index I,.)

I,(0,a) = The maximal dimension of a linear subspace of (0,a)
on which the form v — I(v) is negative definite.

AI(0,a) = The maximal dimension of a linear subspace if (0,a)
on which the form v = I(v) is negative semidefinite.

I(0,a) = The maximal number of linearly independent, C? eigen-
functions of the differential operator (dz/dtz) + R cor-
responding to positive eigenvalues that also satisfy the
boundary conditions implied by membership in {(0,a).



18

AL;(0,a) = The maximal number of linearly independent C? eigen-
functions of the differential operator (dz/dtz) SRR tfcors
responding to non-negative eigenvalues that also satisfy
the boundary conditions implied by membership in
Q(0,a).

Note that several facts follow readily:

AL(0,a) - I3(0,a2) = AL(0,a) - 1;(0,a) (2.8)
= the index of the focal point w (if a is a focal point)
= 0, if a is not a focal point.

I3(0,a) =I(0,2) (2.9)

AILL(0,a) = (AI(0,a))

Proof. Suppose that v(t), 0 tga, lies in Q(0,a) and satisfies:

vi(t) + Re(v(t)) = A3v(t) , with A=0

Then,

a a

A (v(t)|]? 4t = - <v(t,v'"(t)) + Re(vw(t))> dt
fo v / :

equals, after integrating by parts and taking into account the boundary con-
ditions satisfied by v,

- Q(+(0),v(0)) + f v (017 - <v(6),R(x(£)> at = I(v)

0
Then, I(v) =0.

To prove (2.9), notice now that v —~ I(v) restricted to the linear sub-
space of 2(0,a) spanned by the positive eigenfunctions of (d2/dt?) + Ry is
negative definite. Similarly, v = I(v) is negative semidefinite on the sub-
space of §(0,a) spanned by the non-negative eigenfunctions of £(0,a).

Lemma 2.10. AI;(0,a) is finite.

Proof. Suppose otherwise, i.e., there are an infinite number of C?
eigenfunctions vi(t), k=1,2,..., 0=t=1, of (dz/dtz) + Rt corresponding to
eigenvalues Xf( and satisfying the boundary condition corresponding to
lying in Q(0,a).



2]
We can suppose without loss of generality that

1Q(vic(0),vc(0)) | + f <vi(t), vie(t)> dt = 1 (2.10a)

0

f <ve(t)vi(th> at =0 ifk £ . (2.10Db)

0

Then,

a
AL - f i + Re(vie(t), vict)> dt = -Q(vy(0), vic(0))

0

a
- f (0% = <Relvilt)vic(t)> at

0

a
= -0Q(v(0),vy(0)) +/ <R(vie(t)), vy (t)> dt

0

Now, there is a real number 6 such that:
SR iv= 5 <y, vl iforvall sveV, O=t=a
Then,

2
M

IA

a
|Q(vic(0),v (0)) | + & f <vlt) v (8)> at

0

=146 .
i.e., the sequence ()»12() is bounded. We can then suppose, after possibly
taking subsequences, that

lim >‘k =R 7
k—>

and that vk(t) converges as k >~ ®, along with its first two derivatives, uni-
formly to a curve v(t) that is an eigenfunction for eigenvalue X (using
Theorem 2.9). But, this contradicts (2.10b).
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Eemmar 2, 11
AI;(0,a) = AI,(0,a)
I;(0,a) = I,(0,a)

Proof. We prove the first equality: The second is similar. Let
d = AI;(0,a). Then,thereare dlinearl}r independent eigenfunctions vy(t),
...,vg(t) in £(0,a), with eigenvalues A|,..., A\j. We can normalize so that:

3l
f <Vj(t),Vk(t)> dt = 8jx for 1=jk=d
0

What we must show is that, if v(t) € 2(0,a) satisfies:

a
f <t () >0 S forsli= k=d i >, (22118)

0
then I(v) > 0. Suppose otherwise, i.e., such a v exists with I(v) =0. Now,

a
minimize I(v) over all veQ(0,a) satisfying (2.11) and f ”v(t)”2 Ghe =0l

0
Using the '"direct method" of the calculus of variations, [1] this minimum

is taken on by a C? function v(t) in Q(0,a) that is also an eigenfunction of
(dz/dtz) + Rt with eigenvalue XA,. But, this eigenfunction would then have
to satisfy:

a
D xof lvo(®)lI? at

0
forcing A, =0, contradicting the definition of d.
Lemma 2.12. If 0 =a=b, thﬂ
I,(0,a) =I,(0,b)
AL(0,a) = AIL(0,b)
AL (0,a) =1,(0,b)

Proof. Choose € sufficiently small and positive so that a +es=b

and so that there are no mutually conjugate points on the interval [a- €,at+€].
We are now going to define a linear mapping
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de: Q0,a) - £(0,b)
such that:
I(¢(v)) = I(v) for each ve(0,a) (2312)

by making use of Lemma 2.8. Explicitly, ¢e(v)(t), 0=t=Db, is to be a
continuous piecewise C? curve in V such that:

de(v)(t) = v(t) for 0=t=a-¢ (2:18a)
dZ

de(v)(t) is a solution of SRS ] (2213D)
dt

with:

te(v)(a-€) = v(a-¢)

de(v)(at€) 0

de(v)(t) = 0 fora+e =t=b . (2.13¢)

The reader will readily verify that ¢¢ is a bonafide linear mapping that
(using Lemma 2.8) satisfies (2.12). Suppose now that vj(t),...,vg(t) are
linearly independent elements of £(0,a) on which the form I is < 0. By
(2.12), I( pe(vi)) < 0 for 1=k =d. We must then show that ¢¢(vi)(t) are
linearly independent if € is sufficiently small. Suppose otherwise, i.e.,

e

there is, for each €, a relation of the form: ap(€)vk(t) = 0 valid for

O=t=a-e€.

We can normalize so that

d
Z ak(€)2 =l
k=1

Then, there would be a sequence of € going to zero such that ak(e)»ak,
and a relation of the form:

d
Z ak Vk(t) =0
k=1

valid for 0 =t =1, contradicting that the v} were linearly independent.
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This proves the first inequality in Lemma 2.12. The second is
similar. The third involves a slight modification of the argument. Let
a,,...,af be the focal points in the interval [0,a], arranged so that:

0<a;<a,<...<ar=a

Let d),...,ds be the indices of each of the focal points. Let v,(t),...,vg,(t),
0=t=a,, be in £(0,a,), be linearly independent, and C?, and satisfy
(a2/at?) + Ry = 0. Then, ¢¢(vy),..., Pe(vdi) span a subspace of 2(0,b) on
which I is < 0. To see this, use the criterion for equality in Lemma 2.8
and the fact that vi(t) cannot be zero for t sufficiently close to a,,

1=k =d,. Similarly, apply this construction to each of the focal points.
It is easily seen that the subspaces of {(0,b) obtained in this way are all
linearly independent of each other, hence span a subspace of {(0,b) of
dimension d;+...+dg = AI (0,a).

Lemma 2.13. If € is sufficiently small,

AI;(0,a+ €)= AI4(0,a)

Proof. Suppose otherwise. Let €1, k=1,2,..., be a sequence of real
numbers, with €x - 0 as k >~ ®©, and with

ALy(0,a+€y) = AL;(0,a) + 1

Let Vj’k(t), 0=j= AL (0a) + 1, 0=k <>, 0=t =a+te€y, be curves in
Q(0,a+€y) that are C?, that are eigenfunctions of (dz/dtz) + R¢ with non-
negative eigenvalues, and that, for fixed k, are linearly independent.

Using Theorem 2.9, we can arrange (by taking subsequences and normaliz-
ing) that:

lim Vj,k(t) = vj(t) ,

k-0

a.+ek
f <y kel vy 180> bt = 8y,
0

that the first two derivatives converge uniformly for 0< t{ a, and that the
corresponding eigenvalues of (dz/dtz) + R{ converge. Then,

a

f <le(t), ij(t)> he = éjljz’ for lsjl:szAII(O,a) S
0
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But, the vj are C?, belong to £(0,a), and are eigenfunctions of (d2/at?) + Ry
with non-negative eigenvalues, and are linearly independent, a contradiction.

Now we can prove the Index Theorem itself. Note that it is equiva-
lent to the statement:

I (05a)N=N13(072) = T5(0,2) : (2.14)
Note that we have already proved the second of these equalities
(Lemma 2.11). The corollary to Lemma 2.7 implies that the first holds
if a is sufficiently small. Assuming that (2.14) is true for a, we shall
prove it is true for ate, if € is sufficiently small and positive. Now,
L(0,at€) = I;(0,a) + (index of the focal point a). By Lemma 2.12,
I3(0,a) = I,(0,a) = I;(0,a+€) = I;(0,at+€)
= AI;(0,a) if € is sufficiently small, by Lemma 2.13,
= I5(0,a) + index of a.
I,(0,at+€) =1,(0,a+ €) = I3(0,a+ €)= 13(0,a) + index of a.
Thus, I3(0,a+€) - index of a = I,(0,a), which proves (2.14) for at+€. Then,
the set of all numbers b such that (2.14) is true for all a€[0,b] is open.
To complete the proof, we must show that it is closed. Suppose, then, that

ayx is a monotone-increasing sequence,

lim'a, = a :
k—>o

such that (2.14) is true for each aj. We must prove it is true for a also.
Thus, we have:

1,(0,a5) = I(0,ay) for k=1,2,...
From the definition of I;, we have:

lim I,(0,a)) = L,(0,a)

k—>o
By Lemma 2.12, 1,(0,a)) <1,(0,a).
Let us suppose that lim I,(0,a)) # 1,(0,a); i.e.,
k-»on

1,(0,a) > I,(0,a;) for all k.
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To complete the proof, we will show that:

I,(0,a) =I,(0,a-€) for € sufficiently small . (2505

Suppose, then, that v,(t),...,vg(t) are hnearly mdependent C? eigen-
functions of dz/dt2 ) + Ry for p051t1ve eigenvalues X ..\ j that lie in
Q(0,a) (d = 13(0,a)). Choose € > 0 sufficiently small so tha.t there are no

mutually conjugate points on the interval [a,a-2€]. Let v; X(E)r ,vd( s
0 =t <a-€, be continuous piecewise C? curves in V defined as follows:

vi(t) = vi(t) for 0=t=a-2e , 1=k=d

+Rt(vk)() O fora-2e = T=la- & Nk —id!

a-2€ a-€

(Uses Lemma 2.8 to construct these curves.) Since lim I(v}’t) = I(vk) <0,
€0

for 1 = k = d, we see that I(vk ) < 0 if € is sufficiently small. By an argu-

ment similar to that used in proving Lemma 2.12, we see that v{,...,v¥ are

linearly independent if € is sufficiently small. This proves (2.14) and

finishes the proof of the Index Theorem itself.

3. FOCAL POINTS IN CLASSICAL MECHANICS
AND GEOMETRIC OPTICS

We shall take as a starting point the Hamiltonian "model" of clas-
sical mechanics [8]. Thus, we are given a space of variables e Bl
describing configuration space, a space of variables Pi1:--::Pnsdescribing
momentum space, and the product space of variables (qj,p;), 1= i=n,
describing phase space. Where convenient, we will use vector notation:

ol = (Pi)’ q = (qi), etc. An additional variable, labelled as t, is given as

the time variable. A real-valued function H(p,q,t) on (phase x time)-space,
the Hamiltonian (usually the energy)of the system,describes the development
of the system in time via the Hamilton equations:

dqj oH
= o (st =

. L= =5 (3 1)
o X

Ahera aqi



Using a vector notation, we rewrite this as:

2 g—g(qm,p( el 5t
(3.11)
£ =~ (q(0.00,0

Now, suppose that we are given a one-parameter family of solutions of
(3.1), depending on, say, a parameter s, 0<s =< 1, reducing, when s = 0,
to a given solution (q(t),p(t)). Thus, analytically, we are given functions
(a(s.t),p(s,t)) of two variables, with:

9 oH
a? =3p et
3.2
8p . BH (3.2)
Bt . oo Lpt)
Suppose that
o d
Q) = 32 ;P = 2
B850 ®ls=0
Hence, (q(s,t), p(s,t)) admits a Taylor expansion of the form:
giat] = alt) + @ft)s+...
(3.3)

p(s,t) = p(t) + P(t)s+...

It is then a reasonable supposition that the behavior of the solution
t - (q(s,t),p(s,t)) for nonzero but small s is, compared with t = (q(t),p(t)),
regulated by the behavior of the functions t - (Q(t),P(t)). Actually, from
the technical point of view things are a good deal more complicated than
this, but at any rate in applied problems this is a supposition that can be
checked by experiment and that can be used as a basis for design. Now,
the functions (Q(t),P(t)) themselves are the solution of a system of ordinary
differential equations obtained by differentiating (3.2) with respect to s,
then setting s = 0.

3Q _ ilE o*H
St - Spop P(t) + 3dop G

AP e 3%H
% T P(t) = T Q(t)

25
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These are the tensor variational equations of the equations (3.1), based on
the given solution (q(t),p(t)). The coefficients are functions of t (e.g.,
(9%H/3p;4 Bpj) (q(t),p(t),t)) that depend on H and the base solution (q(t),p(t),t).

A curve (q(t)) in g-space which is the projection of a curve in phase
space of a solution of (3.1) is called an extremal. (In case the Hamiltonian
is derived from a problem in the calculus of variations, these are just the
curves which satisfy the Euler-Lagrange equations, whence the name.) In
physical problems, extremals do not occur individually, but occur imbedded
in certain families of extremals, called extremal fields. Each such ex-
tremal field is determined by a solution of the Hamilton-Jacobi partial dif-
ferential equation, which is a real-valued function S(q,t) on q x t-space
such that:

dS dS .
;-‘- H(q, E, t) =0 7 (3.5)

In fact, the curves satisfying the following system of ordinary differential
equations are extremals, forming an n-parameter family (a "congruencest
in classical language) of extremals that will be the extremal field cor-
responding to S(q,t).

) e}
dq TI;@, s, t) ; (3.6)

To verify this statement, we will show that the solutions of (3.6) are ex-
tremals. Let p(t) be the curve

p(t) = g—s (q(t),t) (3.7)

for a given solution of q(t) of (3.6).

We must show that (q(t),p(t)) is a solution of the Hamilton equa-
tions (3.1). Now, (3.6) and (3.7) together give one-half of the Hamilton
equations. The second half will follow from the fact that S(q,t) is a solu-
tion of the Hamilton-Jacobi equation (3.5). In fact:

2 2,
L) = 3555 @00 20+ 22 (a0
5 d )
= Sqva (A0 55 @0 32 a0 + T2 (q(0,0
From (3.5):

@8 . eH'f 38 Y BH [ 3s s
3qot =~ dq \ I 3q’ " )—
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Combining these two relations, we have:

gg_it o A 2_2(‘1“)'%2“):9 Sy S—I:(q(t),p(t),t> :

i.e, (q(t),p(t)) together solve the Hamilton equations.

Now, (3.6) can be solved, with q(t) prescribed at, say, t = 0, as any
points q° of q-space. Thus, we get an n-parameter family of extremals.
(However, only those n-parameter family extremals that arise in this way
from a solution of the Hamilton-Jacobi equation (3.5) are called extremal
fields.)

There is another interpretation of the function S(q,t) that solves
(3.5) in terms of action. (If (q(t),p(t)) is any curve in phase space, 0=t=a,
then the action along the curve is

a
[ 20232 - Ha@e(.90)

0

To see this, given an extremal q(t) that is imbedded in an extremal field
determined by S(q,t), i.e., that solves (3.6), let us compute the action along
the curve (q(t),p(t) = (9S/3q) (q(t),t)) in phase space.

action = [ p(0) 490 _ miq(t).p(),) at
0
_ Pras dq(t) 39S

95 (q(0).0) Y - mifg(e), 52 (ale).0)t) et

Thus, the action along this curve in phase space is just the difference in
values of S on the end points of the corresponding extremal curve in
q-space. This observation lies at the heart of the famous relation between
classical mechanics and geometrical optics. The extremals of the extremal
field are the "rays" corresponding to the wave fronts, which are, for fixed t,
the surfaces S(q,t) = constant.
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Suppose now that we start off with a submanifold A of q-space, with
a given extremal field, with S(q,0) = constant for g€ A. In fact, we can
normalize things so that S(q,0) = 0 for g€ A. Let us choose a time interval,
say 0=t=a. For q°cA, there is a unique solution of q(t,q°) of (3.6) with
q(0,9°) = 0. Following this along tot = a gives us a mapping q° -~ q(a,q°),
representing the "optical image'" of the submanifold A. In geometrical
optics, one is interested in actually computing this submanifold. In prac-
tice, one must be satisfied with an approximate calculation. We will now
show how making this approximate calculation is equivalent to solving the
linear variational equations (3.4) with an appropriate boundary condition at
t = 0, i.e., just the sort of problem dealt with in Section 2. We can also
suppose, by choosing the coordinate system correctly, that A is a linear
subspace of q-space.

We can normalize so that the origin O of the q coordinates is a
point of A, and so that q(t) is the curve of the extremal field with q(O) = 0.
Let s be another real parameter designed to parameterize curves along
A; denote a typical curve in A by q°(s). We can then, for each s, find a
curve t > q(s,t) of the extremal curve with q(s,0) = q°s). The curve
s = q(s,a) will then represent the corresponding curve in the optical image.
By an "approximate calculation" we mean that we must be satisfied with
computing the coefficient Q(t) in the Taylor expansion:

q(s,t) = q(t) + Q(t)s+...

Now, for fixed s, the curve t - (q(s,t),p(s,t) = (9S/9q) (q(s,t),t)) is a solu-
tion of the Hamilton equations (3.1). Thus, if the Taylor expansion of
p(s,t) is

p(s,t) = p(t) + P(t)s+... ;

we have seen that (Q(t),P(t)) is a solution of the linear variational equations
(3.4) based on the given solution (q(t),p(t)). To determine (Q(t),P(t)) com-
pletely, it only remains then to find the boundary conditions at t = 0. Now,
QO(O) = (aq/as) (0,0); hence, Q(0) must be in the tangent space to A at

q” = 0. Also, the fact that q°(s) lies in A and that q — S(q,0) is constant on
A gives:

0 = £ 5(a%s),0)

]

el dqg®
Jq (a°(s),0) e

dq°
p(S,O) E »

1
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Since this must be true for essentially any curve in A starting at O, we
see that the vector p(0) must be perpendicular to the tangent space to A
at O. Hence we can differentiate with respect to s again and sets = 0,

to obtain:

P(0) Q(0) = 0

Finally, then, the boundary conditions satisfied by (Q(t),P(t)) att = 0 are:
Q(0) belongs to the tangent space to A at O . (3.82a)
P(0) is perpendicular to the tangent space to A atO . (3.8b)
We want to transform conditions (3.8) into conditions on Q(0) and

Q'(0) in order to relate to the work in Section 2. Return to the linear
variational equations (3.4), written as:

% = A()P(t) + B(H)Q(t) ;
(3.4")
%’ = - *B(t)P(t) + C(t)Q(t)

(A(t),B(t),C(t)) are n x n matrices, given as follows in terms of H(p,q,t)
and the base solution of (p(t),q(t)) of (3.1).

O%H d%H
. il e — . a = 5 ’t 5
Aj5(t) Sp101; q(t).p(t).t) ; By(t) m(q(t) p(t),t)
(3.9)
Cii(t) = - SE (q(e)p(1),8) 5 *By(H) = By
ij Y aqiaqj AALPAY, % 1) J1
(*denotes transpose of the matrix)
We will suppose that:
det A(t) # 0 forallt ; (3.10)

J’H
det (Fmeneee 0
<apiapj #
For the Hamiltonians arising from a calculus-of-variations problem, (3.10)
corresponds to supposing that the variational problem is regular. (All of

the usual problems from classical mechanics and optics satisfy this condi-

tion.) Let A(t)"! denote the inverse matrix. Then,

0 oAy 1 (d_Q - B(t)Q(t))
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hence:

d -1 4Q -1 o i aeiied S =

= —_— - == R BN R (CR B  NE (E

o (A(t) e B(t)cxt)) T )Q

teiall)

The boundary conditions satisfied at t = 0 now take the form:

Q0)ew (3.12a)

-1 (4R 5 ;
A(0) i (0) - B(0)Q(0)] is perpendicular to W . (3.12b)

Of course, if A and B are suitably restricted, we immediately get
a problem of the type considered in Section 2. For example, A(t) = iden-
tity matrix, B(t) = 0 will do the job (since C is automatically a symmetric
matrix). However, it is also possible to proceed directly with the second-
order system of differential equations (3.11) with initial values (3.12).
Morse considers this system, and the proof of Section 2 gives the Morse
Index Theorem again: We dealt with the simple version in Section 2 merely
to save notational energy. Note also that a simplification has been made in
the initial conditions (3.12) because we chose our coordinates in q-space so
that the submanifold W of g-space for which we are finding the approxi-
mate optical image is a linear subspace. Not having made this assumption
would have added more terms to (3.12b), representing the "curvature' of
W with respect to the gq-coordinate system.

Note the physical significance of the focal point idea: A number
a< 0 would be a focal point if there exists a nonzero solution Q(t) of
(3.11), satisfying (3.12) and Q(a) = 0. Thus, the optical image of W would
degenerate in dimension att = a. A designer of optical instruments would
have an obvious interest in finding the first such focal point. (This is also
the differential geometer's chief interest.) But, the Morse Index Theorem
is ideally suited to the job of estimating the location of the first focal point.
Several computations of this type can be found in Ref. (5), in the context of
Riemannian geometry.



31

BIBLIOGRAPHY

N. Akhiezer, The calculus of variations, Blaisdell (1962).

W. Ambrose, The Cartan structural equations in classical Riemannian
geometry, J. Indian Math. Society, 1960.

W. Ambrose, The index theorem in Riemannian geometry, Annals of
Math. 73 49-86 (1961).

G. Birkhoff and G. C. Rota, Ordinary differential equations, Ginn and
Company (1961).

R. Hermann, Focal points of submanifolds of Riemannian spaces, to
appear in Proc. Ned. Akad. Wet.

E. L. Ince, Ordinary differential equations, Dover Publ., Inc., New
York (1956).

M. Morse, Calculus of variations in the large, Am. Math. Soc.
Colloquium publications (1935).

E. C. Whittaker, Analytical dynamics, Dover Publications, Inc.,
New York (1944).










